Numerical analysis in which a matrix most elements are zeros
Introduction
in some situation we face with matrix that they have a lot of zeros element and as you know it is not necessary to multiple,add,... all of them.if there exists a way to ignore them then the matrix algorithms go better and more efficient.
so we can store matrix as list and everywhere that the element is zero we dont store it but in referencing to it we return zero.
if you do a quick look at it you can see the algorithm,and if you run it you will enjoy
//in the name of allah
#include
using namespace std;
class sparseElem{
public:
int row,col;
double value;
sparseElem *nextRow;
sparseElem *nextCol;
sparseElem(){
}
};
class sparseMatrix{
public:
int n,m;
sparseElem *head_col;
sparseElem *head_row;
sparseElem*c;
sparseElem *r;
sparseMatrix(){
m=3;n=3;
head_col=head_row=NULL;
c=new sparseElem[n];
r=new sparseElem[m];
for(int i=0;i
r[i].row=i;
for(int i=0;i
c[i].col=i;
}
sparseMatrix(int m1,int n1){
m=m1;n=n1;
head_col=head_row=NULL;
c=new sparseElem[n];
r=new sparseElem[m];
for(int i=0;i
r[i].row=i;
for(int i=0;i
c[i].col=i;
}
void setElem(int i,int j,double x){
sparseElem *tmp=new sparseElem;
tmp->row=i;
tmp->col=j;
tmp->value=x;
//important
tmp->nextRow=NULL; //point
tmp->nextCol=NULL;
if(!head_row){//head_row=head_col=NULL
head_row=r+i;
head_col=c+j;
r[i].nextRow=tmp;
r[i].nextCol=NULL;
c[j].nextCol=tmp;
c[j].nextRow=NULL;
tmp->nextRow=NULL;
tmp->nextCol=NULL;
}
else{
sparseElem *pc=head_col;
sparseElem *lpc=NULL;
while(pc->nextRow!=NULL && tmp->col>pc->col){
//cout<<"while 1"<
lpc=pc;
pc=pc->nextRow;
}
if(tmp->col < pc->col){
if(lpc)
lpc->nextRow=c+j;
else
head_col=c+j;
(c+j)->nextRow=pc;
c[j].nextCol=NULL; //new
}
else if(tmp->col > pc->col){
pc->nextRow=c+j;
c[j].nextRow=NULL; //new added maybe error
c[j].nextCol=NULL; //new added maybe optional
}
else//both are equal
pc=c+j;
//fixing r[i] ha
sparseElem *pr=head_row;
sparseElem *lpr=NULL;
while(pr->nextCol!=NULL && tmp->row > pr->row){
//cout<<"while 2"<
lpr=pr;
pr=pr->nextCol;
}
if(tmp->row < pr->row){
if(lpr)
lpr->nextCol=r+i;
else
head_row=r+i;//the first element is inserting;
(r+i)->nextCol=pr;
r[i].nextRow=NULL; //new
}
else if(tmp->row>pr->row){
pr->nextCol=r+i;
r[i].nextCol=NULL; //new added
r[i].nextRow=NULL;//r[i].nextCol=NULL;
}
else//both are equal
pr=r+i;
//fixing adding element to a others in sparseMatrix
sparseElem *pc2=c+j;
sparseElem *lpc2=NULL;
while(pc2->nextCol!=NULL &&pc2->nextCol->row
lpc2=pc2;
pc2=pc2->nextCol;//chon dar haman sotun search mikonim
}
//agar az ghabk vojud dash faghat value ra be an midahim vagarne hame chiz be ham mirizad va hafeze ezafe mibarad
if(pc2->nextCol && pc2->nextCol->row ==tmp->row)// ! if(pc2->nextCol && pc2->nextCol->row>tmp->row)// new error if(pc2->nextCol )
pc2->nextCol->value=tmp->value;
//tmp=NULL;//delete tmp; next is deleting it in below
else {//if(pc2->nextCol && pc2->nextCol->row > tmp->row){//``````````````````completely new
lpc2=pc2;
tmp->nextCol=lpc2->nextCol;
pc2->nextCol=tmp;
}
sparseElem *pr2=r+i;
sparseElem *lpr2=NULL;
while(pr2->nextRow!=NULL &&pr2->nextRow->col
lpr2=pr2;
pr2=pr2->nextRow;//chon dar haman sotun search mikonim
}
if(pr2->nextCol && pr2->nextRow->col ==tmp->col){
delete tmp;
}
else{// if(pc2->nextCol && pc2->nextCol->col > tmp->col){
lpr2=pr2; // new error //lpr2=lpr;
tmp->nextRow=lpr2->nextRow;
pr2->nextRow=tmp;
}
}
}
double getElem(int i,int j){
sparseElem *pc=c+j;
if(pc==NULL)//if there is no element in matrix returns 0
return 0;
while(pc->nextCol!=NULL){
pc=pc->nextCol;
if(pc->row==i)
return pc->value;
else if(pc->row>i)
return 0;//if the row has been passed
}
return 0;
}
sparseMatrix *sparseAdd(sparseMatrix &A,sparseMatrix &B){
sparseMatrix* C=new sparseMatrix(m,n);
sparseElem *apr=A.head_row;
while(apr!=NULL){
sparseElem* ap=apr->nextRow;
while(ap){//p!=null
C->setElem(ap->row,ap->col,A.getElem(ap->row,ap->col));
ap=ap->nextRow;
}
apr=apr->nextCol;
}
double value;
sparseElem *bpr=B.head_row;
while(bpr!=NULL){
sparseElem* bp=bpr->nextRow;
while(bp){//p!=null
value=C->getElem(bp->row,bp->col)+B.getElem(bp->row,bp->col);
C->setElem(bp->row,bp->col,value);
bp=bp->nextRow;
}
bpr=bpr->nextCol;
}
return C;
}
sparseMatrix *sparseMult(sparseMatrix &A,sparseMatrix &B){
sparseMatrix *C=new sparseMatrix(A.m,A.n);
sparseElem *ar=A.head_row;
while(ar){
sparseElem *r=ar->nextRow;
sparseElem *bc=B.head_col;
while(bc){
//bc=bc->nextRow;
sparseElem *c=bc->nextCol;
double value=0;
while(c && r && c->row
c=c->nextCol;
while(r && c && r->col
r=r->nextRow;
while(r && c){
value+=r->value*c->value;
r=r->nextRow;
c=c->nextCol;
}
if(value)
C->setElem(ar->row,bc->col,value);
bc=bc->nextRow;//indexing
r=ar->nextRow;
}
ar=ar->nextCol;
}
return C;
}
};
int main(){
int m,n;
cout<<"please enter m,n:"<
cin>>m>>n;
sparseMatrix M(m,n);
sparseMatrix N(m,n);
double a;
cout<<"please enter two matrix:"<
for(int i=0;i
for(int j=0;j
cin>>a;
if(a){
M.setElem(i,j,a);
}
}
cout<
for(int i=0;i
for(int j=0;j
cin>>a;
if(a){
N.setElem(i,j,a);
}
}
sparseMatrix *C=M.sparseMult(M,N);
cout<<"this is multiplaying two matrices:"<
for(int i=0;i
for(int j=0;j
a=C->getElem(i,j);
cout<<<" ";
}
cout<
}
}